
Perception, Planning and Control for Walking on Rugged Terrain

Reid Simmons Eric Krotkov

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Thc CMU Planetary Rover project is dcvcloping a six-lcggcd
walking robot capable of autonomously navigating, exploring. and
acquiring samplcs in rugged, unknown cnvironments. To gain
cxpcricnce with thc problems involved in walking on ruggcd terrain,
wc built a full-scalc prototype leg and mounted it on a carriagc that
rolls along ovcrhcad rails. This papcr describes issues addrcsscd in
dcvcloping the software system to autonomously walk the leg
through rugged terrain. In particular, we dcscribe thc insight5
gained into perceiving and modeling rugged terrain, controlling the
lcggcd mechanism, interacting with thc ground. choosing safe yet
cflective footfalls, and pl'anning efficient leg moves through space.

1 Introduction

The CMU Planetary Rover project is constructing the Ambler,
a walking robot designed for planetary exploration [2]. The
configuration is a six-legged vehicle with orthogonal legs and
an overlapping gait [l]. These features are designed to
maximize power usage and to simplify planning and control.
To meet its mission goals, the Ambler must be able to
autonomously traverse rugged and often uncertain terrain,
while maintaining a stable platform for its sensors and
scientific equipment.

A single leg of the Ambler was built and suspended from a
carriage attached to overhead rails. We developed a
distributed software system that integrated perception,
planning, and real-time control to autonomously walk the
mechanism through a variety of obstacle courses [6, 101. The
rationale was that ideas would be easier to develop using just a
single leg, and that many of the concepts would transfer to the
full six-legged walker.

This paper reports on our initial experiences using the single
leg of the Ambler. It focuses on the special problems
encountered in perception, control and planning for rough
terrain walking. In particular, we discuss the problems of
modeling 3D terrain, detecting and controlling forceful
interaction Qith terrain, and planning steps that lead to a
balance between efficiency, risk, and progress of the
mechanism. Readers interested in more details of the single-
leg walking system should consult 16, IO].

2 Single-Leg Testbed

A single leg of the Ambler (based on an early design [2]) was
built to experiment with mechanism control and system
integration before committing to the fabrication of a six-
legged vehicle. The leg (Figure 1) has a working radius of
approximately 2.5 meters and a vertical range of travel of
about 1.5 meters. The dimensions were chosen to enable the
Ambler to meet its design objectives of crossing one meter
wide ditches and stepping over one meter high obstacles. The
leg is supported by a carriage mechanism that is mounted on a
pair of rails. The carriage can roll along the rails, providing
one degree of translational freedom, and the leg can rotate
freely under the carriage. The support system is designed to
be statically and dynamically stable, and to allow the leg to
walk in a manner sufficiently similar to the Ambler so that

.
I

ideas generated could be easily transferred to the six-legged
machine. AMBLER LEG

Sensors attached to the leg include a potentiometer to measure
the position and velocity of the carriage along the rails,
incremental and absolute encoders to measure leg positions,
and two inclinometers to measure the rotation of the carriage.
In addition, a six-axis forceftorque sensor is attached to the
bottom of the leg to measure the forces experienced by the
mechanism as it moves.

A scanning laser rangefinder, manufactured by Erim, is fxed
to the carriage (Figure 1). The scanner can acquire 64 by 256
pixel range and reflectance images in half a second. It
digitizes to 8 bits with a range ambiguity interval of
approximately 20 meters. This provides a range resolution of
approximately 7.62cm. The measurements cover 80 degrees
in the horizontal direction (azimuth) and 30 degrees in the
vertical direction (elevation).

To provide for a variety of “Mars-like” terrains, we
constructed an obstacle course below the rails measuring
approximately 11 by 6 meters (Figure 2). The course is filled
with over 40 tons of sand. Terrain features are introduced by
resculpting the surface to form hills and trenches, and by
placing objects on the sand. We have used Styrofoam
boulders, traffic cones, and large boxes to test the ability of the
system to navigate over and around obstacles.

3
I
..

Figure 2: A Typical Arrangement of the Obstacle Course :

3 Rough Terrain Walking

The single-leg walking system consists of five distrib’qed
modules (Figure 3) integrated by the centralized Task Control
Architecture (TCA) [9, 111. The modules communicate with
one another (and with the TCA central control modules) by
passing messages through the central control, which routes
them to the appropriate modules and message handlers. TCA
is basically a high-level robot operating system that provides
utilities for building and coordinating mobile robot systems.
The utilities are meant to bridge the gap between task-level
planners and real-time control systems. In particular, TCA

Gait
Planner

Planner

I Human

t
Central
Control

-F1 Image Sensing

SCANNER
I

Figure 3: Modules for the Single-Leg Walking System

supports 1) distributed processing, 2) resource management, 3)
hierarchical task decomposition, 4) temporal synchronization
of tasks, 5) execution monitoring, and 6) error recovery.

The Conrroller module (Figure 3) handles all robot motions
and responds to queries from other modules regarding leg
position, carriage position and orientation, and force sensor
readings. The Controller runs under the real-time vxWorkstm
operating system. The Image Sensing Manager (ISM)
acquires scanner images from the Erim and determines the
transformation from scanner to world coordinates. For
debugging purposes, the ISM can also access images stored on
disk. The Local Terrain Map (LTM) Manager processes
scanner images to construct elevation maps of the terrain. The
Gait Planner plans where to place the foot and how far to
move the camage in order to advance with minimal risk to the

Gechanism. The Leg Recovery Planner (U P) determines a
‘ trajectory to the planned footfall location that is energy and

time efficient and that avoids terrain collisions.

97
ORlGINAC PAGE

BLACK AND WHITE PHOTOGRAPH

To walk the leg down the obstacle course, the user inputs a
goal location along the rails. The walking system is totally
autonomous from that point on. A message to plan (and
execute) the walk is sent to the Gait Planner module. If the
carriage position is close enough to the user-chosen goal, the
Gait Planner signals success. Otherwise, it requests from the
LTM Manager a terrain elevation map and a map that
evaluates the potential support for the leg at various footfall
locations. If the carriage position has changed from the last
time a map request was issued, the LTM Manager requests a
new scanner image from the ISM. In either case, the
requested maps are constructed and sent back to the Gait
Planner.

The Gait Planner combines constraints imposed by the terrain
and footfall maps with geometric constraints on the leg’s
movement, and chooses the location that minimizes a
weighted sum of the constraints. Based on the chosen footfall

location, the Gait Planner chooses a body move that
maximizes forward progress. The Gait Planner then sends the
chosen footfall and body move to TCA, and then sends itself a
message to plan the next step.

TCA forwards the footfall location to the LRP. The LRP uses
a terrain map obtained from the LTM Manager to plan an
obstacle-free trajectory. The trajectory is then forwarded
through TCA to the Controller, which executes the trajectory
and plants the foot at the desired location. After a successful
leg move, TCA forwards to the Controller the body move
generated by the Gait Planner. The Controller exerts enough
force to compress the terrain, then relaxes to a force sufficient
to provide traction. The horizontal (shoulder and elbow)
joints are then actuated to drive the carriage forward. Finally,
tension built up in the leg as a result of the body move is
relieved, so that the leg does not slip when it is next lifted. At
this point, the TCA forwards the message to the Gait Planner
to plan out the next step.

Figure 4 presents a time breakdown by module for traversing a
typical obstacle course. The system takes six steps in 13.5
minutes while covering about 8 meters (60cm/min). The
darkly shaded areas of the chart represent times when a
module is computing; lightly shaded areas are times when a
module is awaiting a reply from another module. To reduce
the chart's complexity, the 71 leg and body position queries to
the Controller are not illustrated. In any event, they have a
negligible effect on the timings since they are handled in less
than SOmsec each.

Figure 4 indicates that about 60% of the time is spcnt by the
real-time Controller i n moving the leg and carriage.
Conversely the ISM, which spends only one half second for
each of the seven images i t acquires, is nearly always idle.
Our measurements also show that the TCA central control
module accounts for only about 3% of the total operating time.
While, in theory, routing all messages through a central
process could be a bottleneck, the evidence indicates that it is
not a problem for this system.

We have used the walking system described above to navigate
the single leg through a number of complex obstacle courses,
such as illustrated i n Figure 2. While not perfect (primarily

b Gait Manncr

LRP

I LTM Managcr

IO IO

I I

due to sensor and mechanism inaccuracies), the system is
generally successful at navigating the courses. The remainder
of this paper describes perception, control and planning issues
that we addressed in getting the system to walk on rugged
terrain.

4 Issues in Perception

We use a scanning laser rangefinder because of the scanner's
ability to directly recover the three-dimensional structure of
the environment. Therefore, terrain maps can be constructed
more rapidly and reliably than by passive vision techniques,
such as binocular stereo or motion. In addition, using a laser
scanner will enable the Ambler to walk at night. Although the
scanner consumes more power than other imaging techniques,
we believe its speed and accuracy more than offset this
disadvantage.

Our primary terrain representation is an elevation map. An
elevation map is a rectangular grid of real values,
corresponding to the height of the terrain at a representative
point within each grid cell (our current implementation uses
the mid-point of the cell). Grid cells outside the scanner field
of view are labeled unknown, and cells occluded by other
objects are labeled as such, along with the maximum known
elevation of the cell, given the available information. The
map also contains an estimate of the uncertainty of the
elevation value at each grid cell.

We chose to use elevation maps because I) they provide a
representation that is appropriate for a wide variety of tasks, 2)
they can be constructed at multiple levels of resolution, 3) they
are simple to manipulate, and 4) they can be accessed in a
simple way (by a polygon that encloses the region of interest).
A disadvantage is that our elevation maps record just a single
value for each grid cell, hence overlapping objects (such as
trees) cannot be represented. We do not, however, view this
as a serious problem for navigating on Mars.

The LTM Manager uses the Locus Method to transform the
raw range images into elevation and uncertainty maps [7, 51.
The Locus Method efficiently interpolates range data points to
compute an evenly spaced grid of elevation points (Figure 5).

IO IO I O

I

I I

I
1 , , 1 , , , , , , , , , , , 1 1 1 1 , ~

OI:(Wl 0200 03.0 W:OO OS:O0 W W 07:oO 0R:OO 0:W IOfK) 11:oO 12:oO 13:O

Figure 4: Timing Chart for a Typical Run

98

12.0

1.1

Figure 5: Elevation Map of Obstacle Course in Figure 2

The maps created from the most recent images are then
merged with the current elevation maps using maximum
likelihood estimation techniques. The merging operation is
necessary because maps created from a single image do not, in
general, have a wide enough field of view to support the
necessary planning tasks. In planning a leg trajectory, for
example, the LRP must take into account obstacles below and
behind the vehicle. Because the scanner looks forward, the
map constructed from the most recent range image cannot
possibly cover this area, and so the planner needs a map
constructed from a number of past images.

The portions of elevation maps requested by the planners are
computed on demand, but are cached so that future queries
that request the same (or overlapping) regions do not have to
recalculate the values. Along with caching maps, we need a
means of uncaching as the maps become larger than available
local memory. The LTM Manager maintains a 20 by 20 meter
window centered around the vehicle, outside of which grid
cells are paged out, or clipped. While this method of
computing on demand and caching is quite efficient, we are
looking at pre-computing some maps concurrently with the
planning and execution of walking commands.

5 Issues in Mechanism Control

The major issue we addressed in controlling the mechanism
was the forceful interaction of the leg with the terrain. This
impacted the leg and body move procedures, and also error
detection and recovery performed by the real-time control
system.

Moving the leg through free space posed few problems. The
leg is moved through a series of user-supplied way-points,
which are given in joint space. The Controller calculates the
amount of time required for the slowest joint to move between
successive way-points and then scales the speeds of the other
joints so that all joints arrive at each way-point
simultaneously. To smooth the motion, the way-points are
linked with constant velocity segments connected together by
constant acceleration segments [4].

For contacting the terrain, the motion command specifies that
the last way-point is to be made in transition mode. In
transition mode, the forcehorque sensor is monitored and the
motion is stopped if a specified (user-settable) force is
achieved before the actual way-point is reached. If the way-
point is reached Fist, a failure message is issued to TCA.

One problem encountered early in our experiments was the
tendency of the leg to hit terrain features, even though
obstacle-free paths were supposedly being followed. This was
traced to inaccuracies in our kinematic model of the leg: we
had initially assumed a rigid body, but the length of the leg
and its method of connection to the rails led to a large amount
of compliance in the mechanism. We partially solved this
problem by measuring the deflections in the leg and updating
the kinematic routines using a simple deflection model fit to
the data. This improved the accuracy of the leg moves, as
measured in Cartesian space, from about 20cm down to about
5cm.

More troublesome was the body move procedure. Our initial
implementation commanded the position of the horizontal
joints to follow a linear trajectory. This procedure proved to
be very inaccurate due to the compliance of the mechanism,
friction between the carriage and rails, and compliance of the
terrain. We often witnessed errors of more than 40cm over a
(commanded) one meter body move.

Our remedy was to use a velocity, rather than position, control
procedure. To move the body, the force on the leg is Fist
increased to 800 pounds, to compress the underlying terrain.
The force is then relieved to 500 pounds, which provides
sufficient tractive force. The shoulder and elbow joints are
then commanded to achieve given velocities. First, the
Cartesian velocity of the carriage is computed as a clipped,
linear function of the error between the present carriage
position (as read from the potentiometer) and the commanded
goal position. This velocity is then converted into joint
velocities using an inverse Jacobian function. The body move
control loop is operated at a frequency of about 60 Hz, which
differs sufficiently from the natural frequency of the system so
that resonance does not occur.

This velocity-controlled body move procedure is accurate to
within 5cm. The algorithm was subjected to extensive testing
to gain confidence in its performance. Over 1000 moves were
performed with the leg starting at various X, Y locations
relative to the carriage. The resultant data not only conf i i ed
the general accuracy of the body move procedure, but also
provided a “cost map” for the Gait Planner to indicate how
far the carriage can reliably advance from different footfall
locations (see Section 6).

During a body move, the compliance of the mechanism causes
overshoot of the expected positions of the joints, assuming a
rigid kinematic description of the leg. This overshoot takes
the form of stored strain energy which causes the foot to drag
across the terrain when the leg is next lifted. To prevent this,
the tension is relieved by adjusting the final joint angles to
correspond with the expected Cartesian position of the leg.

99

The control system also contains several procedures for
detecting and reacting to errors. The joint limit sensors and
the motion control cards are continually monitored for
possible failures. During the body move control loop, the
system monitors the forces exerted on the foot. The leg is
stopped if the force drops off rapidly, indicating that the foot
may have broken free. As described above, the force sensor is
also monitored during transition mode to detect when the
terrain is contacted.

When errors are detected, the Controller halts any ongoing leg
motions and informs TCA, which passes the failure message
on to the appropriate exception handler. In addition, the
control software permits recovery from hardware errors
without restarting the entire walking system. Such errors
include tripping limit switches, amplifier faults, servo errors,
excessive force readings, and “kill” messages from users.

6 Issues in Planning

Planning problems for single-leg walking include deciding
where to plant the leg, how to move it through space, and how
far to move the carriage at each step. Our approach utilizes
constraints imposed by the robot’s design to plan movements
that are efficient, reliable, and provide a good rate of progress
for the mechanism.

The Gait Planner plans footfalls by combining various
geometric and terrain constraints. For each constraint, a cost
map is created that indicates the goodness of the constraint
within each grid cell (Figure 6). The cost maps are combined
using a weighted sum, and the grid cell with the lowest cost is
chosen as the footfall location. The Gait Planner then chooses
a body move that is the minimum of 1) the best possible
advance from the chosen location, and 2) a user-defined
threshold (we typically constrain the body advance to 1.5m to
get a reasonable number of footfalls over the length of our
testbed).

1. Leg Limits

4. Tcrrain Ilcv;iiion

2 . Carriage Advance

5. Terrain Features

The constraints used by the Gait Planner were derived from
both analysis and experimental evidence. The geometric
constraints include 1) the mechanical limits of the leg, 2) how
far the carriage can travel from a given footfall location, which
is based on empirical values derived from testing the
controller’s body move algorithm (Section 3, and 3) the
visibility of the leg in the scanner field of view, to avoid
occluding terrain. Terrain constraints include 4) the terrain
elevation, since the leg cannot reach areas that are too high or
too low, 5) an evaluation of the flatness of the terrain around
each grid cell [3], since relatively flat terrain is preferable both
for stability and for providing traction in moving the body,
and 6) the closeness of the footfall location to adjacent
obstacles, in order to compensate for inaccuracies in the
mechanism control and scanner resolution.

In combining the cost maps, constraints 1 and 4 above are
used as binary constraints: if the location is not reachable, it is
eliminated from consideration, no matter what the other values
are. The remaining two terrain constraints are given high
weights relative to the remaining two geomemc constraints.
This reflects our concern for the safety of the machine over its
progress.

Advantages of this constraint-based approach are that 1) the
planner does not have to commit a priori to which constraint
is most important, and 2) it is easy to add new constraints as
relevant ones arc identified [121. Although this approach
evaluates a large number of grid cells, in practice the gait
planning is fast relative to other computations.

Once the Gait Planner decides where to put the foot, the LRP
determines the trrijectory that will get the leg to that position
without hitting any obstacles. The LRP uses the novel
Envelope Trajectory Finding Algorithm (ETFA) to find time
and energy efficient moves through 3D space, while searching
only a 2D grid. The LRP starts by creating a configuration
search space for the elbow and shoulder joints [X I . dividing the

3. Eririi Visibility

6. Closeness to Obstacles

Figure 6: Constraint Cost Maps for Choosing a Good Footfall
(darker shades indicate better footfall locations)

100

7. Composite Map

space into a discrete grid approximately 0.1 radian wide. The

LRP fills the grid with obstacles, growing the terrain features

and other legs (for the six-legged case) by the radius of the

foot plus an uncertainty factor.

To search the space, the ETFA needs to estimate the energy

and time needed to travel between grid cells. The energy

consumed is estimated simply as the sum of the energy needed

to move the elbow and shoulder joints to a cell, plus the

energy needed to raise the leg above the terrain elevation at

the cell. While this assumes that the power consumption in

each joint is independent, it is a reasonable approximation

given the slow speeds of our mechanism.

s G
Js,s,,,,,s_¢s

a. Diffe_nt TrNectories

b. Trajectory Envelopes

c. Final Path

Figure 7: The Envelope Trajectory Finding Algorithm

It is more difficult to estimate the time needed to get to a cell,

as Figure 7a illustrates. If we just add up the times to get to

each individual cell, path X is the quickest way to get to point

A. To get a little further to point B, however, path Z is faster

than X followed by Y, since in path Y the horizontal joints

must stop and wait for the vertical lift, while in path Z, the leg

is lifting while it is moving horizontally.

In essence, we need to keep _ack of all possible paths that the

leg can take in reaching a particular grid cell. This is what the

"envelope" part of the ETFA is about. The algorithm keeps

track of the maximum and minimum heights that the leg can

reach in any particular cell, assuming that the leg lifts/lowers

at full speed while moving horizontally (Figure 7b). Thus, the

leg can reach anywhere within the envelope in the same

amount of time. Only if the terrain is above the top of an

envelope (e.g., point C) does the leg have to stop moving
horizontally and lift.

The ETFA finds the minimum-cost trajectory using A* search

and a weighted sum of the energy and time metrics described

above. At the end of the search, the planner determines an

actual trajectory through the envelope space by choosing
vertical moves that minimize the risk to the machine while

maintaining the optimality of the path found. In particular,
this means performing all purely vertical lifts at the start and

delaying all purely vertical descents until the end of the move

(Figure 7c).

In actual use, the Gait Planner performs very well, typically

choosing safe footfalls that skirt obstacles, while enabling the
carriage to be moved at, or near, its maximum advance. The

LRP typically chooses trajectories that hug the ground when

the terrain is relatively fiat. For obstacle-filled terrain, the

LRP typically chooses to go around, rather than over, large

obstacles, since the vertical joint of the leg is much slower

than the two horizontal joints.

7 Conclusions

To date, the leg has autonomously traversed several hundred

meters through various obstacle courses. The effort has taught

us much about perception, locomotion, and planning for

rugged-terrain walking, lessons that apply to the full six-

legged Ambler.

Perhaps the most important result is that our experience with

the single-leg testbed has led to some significant changes in

the configuration of the Ambler, especially with regard to

compliance. The single leg was too flexible to permit the type

of accurate control needed to negotiate very rugged terrain.

The legs of the new Ambler design are extremely rigid [1].
Our experience.to date with the full Ambler indicates that we

can do leg and body moves to within a centimeter of

commanded positions. In any event, we believe our

experience with the single-leg testbed will enable us to handle

any residual compliance.

As for the software system, the Task Control Architecture has

been ported to the Ambler without any modifications. The

LTM Manager and ISM needed only minor modifications to

handle the new Ambler geometry. The Erim scanner itself,

however, was found to have insufficient resolution and

accuracy for our purposes. While this did not prevent

successful walking, it did limit the roughness of the terrains

that the system could traverse. For the six-legged Ambler we

have procured a scanner, manufactured by Perceptron, that

overcomes most of these problems.

One surprise in the endeavor was the fine balance between

geometric and terrain constraints for gait planning. Much of

our effort in getting the leg to negotiate terrain was in fine-

tuning the weighting function that combined constraints. Our

current methodology is empirical: trying the system on a

variety of terrains and tweaking the weights to reflect the

results of the experiments. To make the process of choosing

weights less ad hoc, we are considering the use of adaptive

101

algorithms that autonomously adjust the constraint weights
based on the difference between the planned moves and actual

outcomes. Another problem was that the footfall evaluation

constraints used did not always yield what we subjectively

believed to be the best footfall location. We are currently

investigating a more feature-based approach to provide better

evaluations. In general, gait and footfall planning are areas of

on-going research and will undoubtably consume much of our

effort in getting the Ambler to walk on rugged terrain [13].

We believe, however, that the constraint-based structure of the

Gait Planner will enable us to experiment with various

constraints and weighting schemes without much alteration to

the basic planning algorithm.

Error detection and recovery is an important area that, to date,

has received only modest attention by our group. The real-

time Controller continually monitors its sensors and
electronics to detect anomalies, and halts the mechanism when

they occur. It then passes error information through TCA for

action by higher-level exception handlers. Currently, the

exception handlers halt the system if the error was caused by a

hardware fault (e.g., a bad amplifier), and replan the last step

if the error was caused by a bad footfall (e.g., the foot slips

while doing a body move). Much more work remains,

however, in detecting additional errors (such as colliding with

obstacles while moving through space), automated diagnosis

of errors, and intelligent error recovery.

The major impetus for the single-leg walking program was to

gain experience for six-legged walking. To that extent, the

project was quite successful. We have gained much insight

into perceiving and modeling rugged terrain, controlling the

legged mechanism, interacting with the ground, choosing _afe

yet effective footfalls, and planning efficient leg moves

through space. The task ahead is to apply our experiences and

successes to an autonomous walking system for the full six-

legged Ambler.

Acknowlegements

Many members of the Planetary Rover project contributed to

the single-leg walking system. Significant contributions in the

integration and testing of the system were provided by
P. Balakumar, L. Chrisman, C. Fedor, R. Hoffman, M. Hebert,

G. Roston, and D. Wettergreen. This research is supported by

NASA under Contract NAGW-1175.

References

1. Bares, J., Whittaker, W. Walking Robot with a Circulating
Gait. Proc. of IEEE International Workshop on Intelligent

Robots and Systems, Tsuchiura, Japan, July, 1990.

2. Bares, J., et al. Ambler: An Autonomous Rover for

Planetary Exploration. IEEE Computer, Vol. 22, No. 6, 1989.

3. Caillas, C.,Hebert, M.,Krotkov, E., Kweon, I.S., and

Kanade, T. Methods for Identifying Footfall Positions for a

Legged Robot. Proc. IEEE International Workshop on

Intelligent Robots and Systems, Tsukuba, Japan, September,

1989, pp. 244-250.

4. Craig, J.. Introduction to Robotics, Mechanics and
Control. Addison-Wesley Publishing Company, 1986.

5. Krotkov, E.,Caillas, C., Hebert, M., Kweon, I.S., and

Kanade, T. First Results in Terrain Mapping for a Roving

Planetary Explorer. Proc. NASA Conf. on Space
Telerobotics, Jet Propulsion Laboratory, Pasadena, CA,

January, 1989.

6. Krotkov E., Simmons, R., Thorpe, C. Single-Leg Walking

with Integrated Perception, Planning, and Control. Proc. of
IEEE Intemational Workshop on Intelligent Robots and

Systems, Tsuchiura, Japan, July, 1990.

7. Kweon, I. S. and Hebert, M. and Kanade, T. Perception for

Rugged Terrain. Proc. SPIE Mobile Robots III Conf.,

Cambridge, Massachusetts, November, 1988.

8. Lozano-Perez, T. Spatial Planning: A Configuration Space

Approach. IEEE Transactions on Computers, C-32:108-120,
1983.

9. Simmons, R., Mitchell, T. A Task Control Architecture for

Autonomous Robots. Proceedings of Space Operations and
Autonomous Robotics Conference, Houston, TX, July, 1989.

10. Simmons, R., Krotkov, E., Roston, G. Integrated System

for Single Leg Walking. Tech. Rept. CMU-RI-90, Robotics
Institute, Carnegie Mellon University, July, 1990.

11. Simmons, R., Lin, L.J., Fedor, C. Autonomous Task
Control for Mobile Robots. Proc. of IEEE Symposium on

Intelligent Control, Philadelphia, PA, September, 1990.

12. Stentz, A. Multiresolution Constraint Modeling for

Mobile Robot Planning. Proc. SPIE Symposium on Advances

i,1 Intelligent Robotics Systems, November, 1989.

13. Wettergreen, D., Thomas, H., and Thorpe, C. Planning

Strategies for the Ambler Walking Robot. Proc. IEEE
International Conference on Systems Engineering, August,

1990.

102

